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Chaotic diffusion of particles with finite mass in oscillating convection flows
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Deterministic diffusion in temporally oscillating convection is studied for particles with finite mass. The
particles are assumed to obey a simple dissipative dynamical system and the particle diffusion is induced by the
strange attractor. The diffusion constants are numerically calculated for convection models with free and rigid
boundary conditions.
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The motion of a fluid particle in the velocity fieldv(x) is
determined by the differential equation

dx

dt
5v~x,t ! ~1!

with the initial condition x(0). Even for regular velocity
fields, the particle motion can become chaotic and it is ca
the Lagrangian chaos@1,2#. For an incompressible fluid, th
dynamical system~1! is a conservative system. In two d
mensions, the evolution equations become

dx

dt
5

]c

]z
,

dz

dt
52

]c

]x
, ~2!

wherec is the stream function andx5(x,z). Equation~2! is
a Hamiltonian system. Solomon and Gollub studied exp
mentally and numerically the particle diffusion in th
Rayleigh-Bénard convection which oscillates temporally@3#.
In the oscillating convection, the velocity field is derive
from a stream functionc5A/k sin$kx1Bsin(vt)%W(z),
where k is the wave number,A is the maximum vertical
velocity, B and v are the amplitude and frequency of th
oscillation, andW(z) is a function which satisfies the bound
ary conditions at the top and bottom surfaces (z51 and 0!.

In this Brief Report, we assume that a particle embed
in the fluid has a finite mass. The equation of motion is
general rather complicated@4#. We assume a simple model a

dvx

dt
5gS ]c

]z
2vxD ,

dvz

dt
5gS 2

]c

]x
2vzD , ~3!

where vx5dx/dt,vz5dz/dt, and g21 denotes a respons
time and is proportional to the mass of the particle. For
massless case,g becomes infinity and Eq.~2! is recovered.
The volume contraction rate of the four-dimensional ph
space (x, vx , z, vz) is 22g, and therefore the dynamica
system~3! is a dissipative system. We assume the same f
of stream functionc5A/p sin$px1Bsin(2pt)%W(z). For
simplicity, we assumeW(z)5sin(pz) for the convection
with free boundary conditions, andW(z)5z2(12z)2 for the
convection with rigid boundary conditions. A more comp
cated functionW(z) is used in the exact linear stabilit
analysis of the Be´nard convection with rigid boundary con
ditions @5#.
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The fixed points of the dynamical system~3! at B50
are (x0 ,vx0 ,z0 ,vz0)5(1/2, 0, 1/2, 0), (x1 ,vx1 ,z1 ,vz1)
5(0, 0, 0, 0), and (x2 ,vx2 ,z2 ,vz2)5(0, 0, 1, 0). The fixed
point (x0 ,z0) is an elliptic point for the Hamiltonian system
~2! and the orbit near the elliptic point is stable for sm
perturbations in the Hamiltonian system. It is called t
KAM theorem and the chaotic behaviors cannot be expec
near the elliptic point. The fixed points (x1 ,z1) and (x2 ,z2)
are saddle points and the chaotic orbits appear near
saddle points for nonzeroB in the Hamiltonian system.

On the other hand, the fixed point (x0 ,vx0 ,z0 ,vz0) for Eq.
~3! at B50 is an unstable focus for finiteg and the orbit
approaches the heteroclinic orbits which connects the dif
ent saddle points. Figure 1~a! displays a trajectory starting
from (x,vx ,z,vz)5(0.5001, 0, 0.5, 0) forA51, B50, g
520, andW(z)5sinpz. As the time evolves, all trajectorie
approach the saddle connections which connect four sa
points (0,0), (1,0), (1,1), and (1,0). The numerical simu
tion was performed with the Runge-Kutta method of tim
stepDt50.0005. The orbits seem to be attracted rapidly
the saddle points. For the rigid boundary model withW(z)
5z2(12z)2, there are fixed lines atz50 and 1. The eigen-
values around the points (x,z)5(x,0) and (x,1) on the fixed
lines are calculated from

ddx

dt
5dvx ,

ddvx

dt
5g@2A/p sin~px!dz2dvx#,

ddz

dt
5dvz ,

ddvz

dt
52gdvz ,

FIG. 1. ~a! Trajectory in the (x,z) plane for A51, B50, g
520 and W(z)5sinpz. The initial condition is (x,vx ,z,vz)
5(0.5001, 0, 0.5, 0).~b! Time evolution of x(t) for A54p, B
50, g520, and W(z)5z2(12z)2. The initial condition is
(x,vx ,z,vz)5(0.1, 0, 0.1, 0). Note that the time scale is logarit
mic.
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wheredx,dz,dvx ,dvz are small deviations from the point
on the fixed lines. The eigenvalues are 0, 0,2g, and2g. It
is a singular situation in a viewpoint of dynamical system
The trajectories are attracted to the saddle connection; h
ever, the flow near the fixed lines is very slow. Figure 1~b!
displays the time evolution of x(t) starting from
(x,vx ,z,vz)5(0.1, 0, 0.1, 0) forA54p, B50, g520, and
W(z)5z2(12z)2. The time evolution ofx(t) may seem to
be like a limit cycle; however, the time axis is plotted with
logarithmic scale. It implies that it takes an exponentia
longer time for the particle to circulate one convection cell
the particle is close to the saddle connection.

The saddle connection is unstable for general pertu

FIG. 2. ~a! Strange attractor in the (@x11/2#, @z11/2#) plane
for A51, B50.001, g520, andW(z)5sinpz. ~b! Stationary dis-
tribution P(z) of z for the same parameter values as~a!. ~c! Time
evolution ofx(t) for the same parameters.
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tions. The unstable manifolds and stable manifolds star
from saddle points intersect and a strange attractor app
near the saddle points for nonzeroB @6#. All trajectories are
attracted to the strange attractor near the saddle points
the chaotic diffusion is induced. Figure 2~a! is a projection of
the strange attractor into the (@x11/2#,@z11/2#) plane att
5n5 integer for A51, B50.001, g520, and W(z)
5sinpz, where @y# implies the fractional part ofy. The
strange attractor around the saddle points (x,z)
5(0,0), (1,0), (0,1), and (1,1) is shifted around (1/2, 1/
to clarify the attractor. We have performed several numer
simulations using different initial conditions; however, w
have obtained the same strange attractor. The stationary
tribution of the particle position is uniform for the Hami
tonian system~2! which corresponds to the massless ca
however, the stationary distribution of the particle position
not uniform in the dissipative system~3!. Figure 2~b! dis-
plays a double logarithmic plot of the distributionP(z) of z
near z50 for A51, B50.001, g520, andW(z)5sinpz.
The particle is attracted to the strange attractor near
saddle points and the stationary distribution seems to ob
power law with an exponent about 0.93. Figure 2~c! displays
the time evolution ofx(t) for the same parameters from th
initial condition (x,vx ,z,vz)5(0.5001, 0, 0.5, 0). Chaotic
diffusion is induced even for the very small perturbation.

There are many ‘‘windows’’ of stable limit cycle attractor
when the parameterB is changed. If a limit cycle which runs
across convection cells exists and it is stable,x(t) increases
or decreases with a constant average velocity. The limit cy
corresponds to the accelerator mode in the Hamiltonian
tem~2! @7#. As B is changed, the stable limit cycle disappea
at a critical point. However, the velocity correlation is ve
long near the bifurcation point of the limit cycle. The velo
ity vx keeps positive or negative values for a long time a
the direction of motion changes intermittently. Figure 3 d
plays such a constantly increasing time evolution ofx(t) at
B50.002 and an intermittent time evolution ofx(t) at B
50.002 165 forA51,g520, andW(z)5sinpz. The diffu-
sion constantD5 lim

t→`
^@x(t1t)2x(t)#2&/2t is enhanced

near the bifurcation point. Figure 3~b! displays the diffusion
constant as a function ofB. The averagê•••& to evaluate
the diffusion constant is numerically calculated as dou
averages of a long time average and the average with res
to 100 different initial conditions. The diffusion constant in

FIG. 3. ~a! Time evolutionx(t) at B50.002 ~solid line! and
0.002 165~dashed line! for A51, g520, andW(z)5sinpz. ~b!
Diffusion constants for severalB’s near the critical point of the
limit cycle.
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creases as 1/(B2Bc)
a, where Bc;0.002 16 and a

50.5–0.6.
The chaotic diffusion occurs both for free boundary mo

els and rigid boundary models. The difference between
two boundary conditions is clearly seen, when the pertur
tion amplitudeB is very small. Figure 4 displays the avera
period for a particle to circulate one convection cell as
function of B. The period is numerically obtained as the a
erage interval between neighboring two times wherez(t)
50.5 anddz/dt.0. Figure 4~a! shows the results forA
51, g520, W(z)5sinpz. The average periodT is approxi-
matelyT;24.1 log10B. The logarithmic dependence is cha
acteristic of the saddle connection. The period increases
slowly asB is decreased. Figure 4~b! shows the results fo
A54p,g520, andW(z)5z2(12z)2. The average period
increases approximately by a power law:T;B21/2 as B is
decreased for the rigid boundary model. It may be due to
existence of the fixed lines for the rigid boundary conditio
The average periodT plays a role of a unit time for the
chaotic diffusion. For example, if the direction of motion
assumed to be randomly changed after each circulatio
convection cells, the total stepsN of random changes of di
rection during the time intervalt is estimated asN;t/T;
therefore, the diffusion constant is estimated asD}1/T. Fig-
ure 5~a! displays numerically obtained diffusion constants
severalB’s for A51, g520, W(z)5sinpz. The diffusion
constants depend onB in a complicated manner. It is partl
due to the ‘‘windows’’ structures by the stable limit cycle
For example, the diffusion constantD is zero at B53
31025, where there exists a stable limit cycle which circ

FIG. 4. ~a! Semilogarithmic plot of the average circulation p
riod for W(z)5sinpz. ~b! Double-logarithmic plot of the averag
circulation period forW(z)5z2(12z)2.
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lates in a single convection cell. However, the diffusion co
stant has a tendency to decrease very slowly asB is de-
creased. Figure 5~b! displays numerically obtained diffusio
constants at severalB’s for A54p,g520, and W(z)
5z2(12z)2. The diffusion constant decreases with a pow
law: D;B1/2 as B is decreased. The numerical results a
consistent with the above rough argument.

To summarize, we have numerically studied the chao
diffusion of particles with finite mass in oscillating conve
tion. The diffusion is induced by the strange attractor n
the saddle points. In a sense, the chaotic diffusion is
hanced in such dissipative systems, since there exist
stable orbits near the center of the convection cell and
orbits are attracted toward the saddle points in contrast to
Hamiltonian system. The strange attractor exists even
very small perturbations, since the attractor of the nonp
turbed system is a singular one, that is, the saddle con
tion. Special enhancement of the diffusion constant occ
near the bifurcation points of limit cycles corresponding
the accelerator modes in the Hamiltonian system. The beh
iors of the chaotic diffusion at very weakB depend on the
boundary conditions. For the rigid boundary conditions,
motion of the particle becomes very slow near the top a
bottom boundaries, since the flow velocity is zero at t
boundaries. Therefore, the average period circulating aro
one cell becomes very large for smallB and the diffusion
constant decreases more rapidly than the case of the
boundary conditions. However, it is left to future study
explain theB dependence theoretically.

We would like to thank Professor S. Kai, Dr. Y. Hidak
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FIG. 5. ~a! Semilogarithmic plot of the diffusion constants fo
W(z)5sinpz. ~b! Double-logarithmic plot of the diffusion con
stants forW(z)5z2(12z)2.
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