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Chaotic diffusion of particles with finite mass in oscillating convection flows
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Deterministic diffusion in temporally oscillating convection is studied for particles with finite mass. The
particles are assumed to obey a simple dissipative dynamical system and the particle diffusion is induced by the
strange attractor. The diffusion constants are numerically calculated for convection models with free and rigid
boundary conditions.
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The motion of a fluid particle in the velocity fiekdx) is The fixed points of the dynamical systefB) at B=0
determined by the differential equation are  (Xg,Ux0:20,050)=(1/2,0,1/2,0),  K1,0y1,21:01)
=(0,0,0,0), and X5,v42,2Z>,052)=(0,0,1,0). The fixed
dx point (Xq,2g) is an elliptic point for the Hamiltonian system
a=V(X,t) (1) (2) and the orbit near the elliptic point is stable for small

perturbations in the Hamiltonian system. It is called the
ith the initial dit 0 E f | locit KAM theorem and the chaotic behaviors cannot be expected
Wi e initial conditionx(0). Even for regular velocity near the elliptic point. The fixed pointx{,z;) and (,,z,)

fields, the particle motion can become chaotic and it is Ca”e%re saddle points and the chaotic orbits appear near the
the Lagrangian chadd,2]. For an incompressible fluid, the ¢gqqle points for nonzerd in the Hamiltonian system.

dynar_nical systen{l) _is a congervative system. In two di-  op, the other hand, the fixed POINKY, U020, 0) Tor EQ.
mensions, the evolution equations become (3) at B=0 is an unstable focus for finitg and the orbit
approaches the heteroclinic orbits which connects the differ-
dx_d¢ dz_ 9y 2 ot saddle points. Figure(d displays a trajectory starting
dt 9z’ dt ox’ from (x,vy,z,v,)=(0.5001,0,0.5,0) forA=1, B=0, y
=20, andW(z) =sin#wz As the time evolves, all trajectories
wherey is the stream function ard= (x,z). Equation(2) is ~ approach the saddle connections which connect four saddle
a Hamiltonian system. Solomon and Gollub studied experiPoints (0,0, (1,0), (1,1), and (1,0). The numerical simula-
mentally and numerically the particle diffusion in the tion was performed with the Runge-Kutta method of time
Rayleigh-E@ard convection which oscillates temporalg]. stepAt=0.0095. The orbits seem to be attracted rapidly to
In the oscillating convection, the velocity field is derived thezsaddlez points. For the rigid boundary model viti(z)
from a stream function y=A/k sin{lkx+Bsin)W(@), ~Z (1—2)% there are fixed lines &=0 and 1. The eigen-
wherek is the wave numberA is the maximum vertical Vvalues around the pointsz) =(x,0) and &,1) on the fixed
velocity, B and w are the amplitude and frequency of the lines are calculated from

oscillation, andN/(z) is a function which satisfies the bound- déx dév,

ary conditions at the top and bottom surfaces-( and 0. T vy, T Y[2A/ 7 Sin(7rX) 62— dvy],
In this Brief Report, we assume that a particle embedded

in the fluid has a finite mass. The equation of motion is in déz dév,

general rather complicatéd]. We assume a simple model as gt %z Tgr o Yév,,

(a)

, (3) 17— b)
o

where v,=dx/dt,u,=dz/dt, and y ! denotes a response
time and is proportional to the mass of the particle. For the~ 05+
massless case; becomes infinity and Eq2) is recovered. 0.4+
The volume contraction rate of the four-dimensional phase
space X, vy, Z,v,) iS —2v, and therefore the dynamical

dt Moz U Tdt T T ax e

-

douy (&_{ﬂ ) dv, ( Iy

©

0.

(o]
1

0.2+

system(3) is a dissipative system. We assume the same form 7 o5 O 160 1000 10300 100000
of stream function ¢=A/ 7 sin{mx+Bsin(2at)}W(Z2). For x !

simplicity, we assumeW(z)=sin(mz) for the convection FIG. 1. (a) Trajectory in the §,7) plane forA=1, B=0, y
with free boundary conditions, an(z) =z*(1-2)? forthe  —20 and W(z)=sinmz The initial condition is &uvy,2v,)

convection with rigid boundary conditions. A more compli- =(0.5001, 0, 0.5, 0) (b) Time evolution ofx(t) for A=4w, B
cated functionW(z) is used in the exact linear stability =0, y=20, and W(z)=2z%(1-2)2. The initial condition is
analysis of the Beard convection with rigid boundary con- (x,v,,z,v,)=(0.1,0,0.1,0). Note that the time scale is logarith-
ditions[5]. mic.
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N FIG. 3. (a) Time evolutionx(t) at B=0.002 (solid line) and
A 0.002 165(dashed ling for A=1, y=20, andW(z)=sinwz (b)
0.49 r = T Diffusion constants for severd’s near the critical point of the
[x(n)+0. 5]
(b tions. The unstable manifolds and stable manifolds starting
1000 p——— from saddle points intersect and a strange attractor appears
F near the saddle points for nonzeBd 6]. All trajectories are
100 L attracted to the strange attractor near the saddle points and
= F the chaotic diffusion is induced. Figuré¢a2is a projection of
a the strange attractor into théx+ 1/2],[ z+ 1/2]) plane att

10§ =n=integer for A=1, B=0.001, y=20, and W(2)

=sinzz, where[y] implies the fractional part of. The
strange attractor around the saddle pointx,z)
=(0,0), (1,0), (0,1), and (1,1) is shifted around (1/2, 1/2)
bl e to clarify the attractor. We have performed several numerical
0.01 0.1 simulations using different initial conditions; however, we
have obtained the same strange attractor. The stationary dis-
tribution of the particle position is uniform for the Hamil-
tonian system2) which corresponds to the massless case,
however, the stationary distribution of the particle position is
not uniform in the dissipative systef3). Figure 2Zb) dis-
plays a double logarithmic plot of the distributiét(z) of z
nearz=0 for A=1, B=0.001, y=20, andW(z)=sinmz
The particle is attracted to the strange attractor near the
saddle points and the stationary distribution seems to obey a
-20- power law with an exponent about 0.93. Figute)isplays
the time evolution of(t) for the same parameters from the
initial condition (x,vy,z,v,)=(0.5001,0,0.5,0). Chaotic
diffusion is induced even for the very small perturbation.
There are many “windows” of stable limit cycle attractors
when the parametd is changed. If a limit cycle which runs
across convection cells exists and it is stallg) increases
or decreases with a constant average velocity. The limit cycle
corresponds to the accelerator mode in the Hamiltonian sys-
tem(2) [7]. As B is changed, the stable limit cycle disappears
at a critical point. However, the velocity correlation is very
long near the bifurcation point of the limit cycle. The veloc-
s ity v, keeps positive or negative values for a long time and
V'\t,be direction of motion changes intermittently. Figure 3 dis-
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FIG. 2. (a) Strange attractor in thg X+ 1/2], [z+1/2]) plane
for A=1, B=0.001, y=20, andW(z)=sinwz (b) Stationary dis-
tribution P(z) of z for the same parameter values(as (c) Time
evolution ofx(t) for the same parameters.

where X, 6z, vy, dv, are small deviations from the points
on the fixed lines. The eigenvalues are 0;-§, and—y. It
is a singular situation in a viewpoint of dynamical system

The trajectories are attracted to the saddle connection; ho . L .
ever, the flow near the fixed lines is very slow. Figute)1 P/ayS such a constantly increasing time evolutiorx() at

. : : ; B=0.002 and an intermittent time evolution &ft) at B
displays the time evolution ofx(t) starting from . .
(X,v4,2,0,)=(0.1,0,0.1, 0) foA=4, B=0, y=20, and =0.002 165 forA=1,y=20, andW(z)=sinwz. The diffu-

W(2)=27%(1—2)2. The time evolution of(t) may seem to sion constanD—hmHm([x(H 7)—X(t)]9)/27 is enhanced

be like a limit cycle; however, the time axis is plotted with a near the bifurcation point. Figurgl® displays the diffusion
logarithmic scale. It implies that it takes an exponentiallyconstant as a function d@. The average - - -) to evaluate
longer time for the particle to circulate one convection cell aghe diffusion constant is numerically calculated as double
the particle is close to the saddle connection. averages of a long time average and the average with respect
The saddle connection is unstable for general perturbao 100 different initial conditions. The diffusion constant in-
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FIG. 4. (a) Semilogarithmic plot of the average circulation pe-  FIG. 5. (a) Semilogarithmic plot of the diffusion constants for
riod for W(z)=sin=wz (b) Double-logarithmic plot of the average W(z)=sinwz (b) Double-logarithmic plot of the diffusion con-
circulation period forW(z) = 22(1—2)2. stants forwW(z) =z2(1—z)2.

lates in a single convection cell. However, the diffusion con-
creases as IB—B.)“ i
¢/ stant has a tendency to decrease very slowlyBas de-

=0.5-0.6. creased. Figure(b) displays numerically obtained diffusion
The chaotic diffusion occurs both for free boundary mod-constants at severaB's for A=4m,y=20, and W(z)

els and rigid boundary models. The difference between the- 22(1—7)2. The diffusion constant decreases with a power

two boundary conditions is clearly seen, when the perturbagw: D~BY2 as B is decreased. The numerical results are
tion amplitudeB is very small. Figure 4 displays the average consistent with the above rough argument.

period for a particle to circulate one convection cell as @ To summarize, we have numerically studied the chaotic
function of B. The period is numerically obtained as the av- giffusion of particles with finite mass in oscillating convec-
erage interval between neighboring two times whefg  tion. The diffusion is induced by the strange attractor near
=0.5 anddz/dt>0. Figure 4a) shows the results foA  the saddle points. In a sense, the chaotic diffusion is en-
=1, y=20, W(2) =sinmz The average periollis approxi-  hanced in such dissipative systems, since there exist no
mately T~ —4.110ogB. The logarithmic dependence is char- stable orbits near the center of the convection cell and the
acteristic of the saddle connection. The period increases veyhits are attracted toward the saddle points in contrast to the
slowly asB is decreased. Figure(ld) shows the results for Hamiltonian system. The strange attractor exists even for
A=4m,y=20, andW(z)=z*(1—2)%. The average period very small perturbations, since the attractor of the nonper-
increases approximately by a power laWw-B Y2 asBis  turbed system is a singular one, that is, the saddle connec-
decreased for the rigid boundary model. It may be due to théion. Special enhancement of the diffusion constant occurs
existence of the fixed lines for the rigid boundary conditions.near the bifurcation points of limit cycles corresponding to
The average period plays a role of a unit time for the the accelerator modes in the Hamiltonian system. The behav-
chaotic diffusion. For example, if the direction of motion is jors of the chaotic diffusion at very weak depend on the
assumed to be randomly changed after each circulation dfoundary conditions. For the rigid boundary conditions, the
convection cells, the total stepsof random changes of di- motion of the particle becomes very slow near the top and
rection during the time intervat is estimated adN~7/T,  bottom boundaries, since the flow velocity is zero at the
therefore, the diffusion constant is estimatedas1/T. Fig-  boundaries. Therefore, the average period circulating around
ure Ha) displays numerically obtained diffusion constants atone cell becomes very large for sm&8land the diffusion
severalB's for A=1, y=20, W(z)=sinwz. The diffusion constant decreases more rapidly than the case of the free
constants depend diiin a complicated manner. It is partly boundary conditions. However, it is left to future study to
due to the “windows” structures by the stable limit cycles. explain theB dependence theoretically.

For example, the diffusion constal is zero atB=3 We would like to thank Professor S. Kai, Dr. Y. Hidaka,

X 107°, where there exists a stable limit cycle which circu- and Mr. K. Tamura for valuable discussions.

where B.~0.00216 and «
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